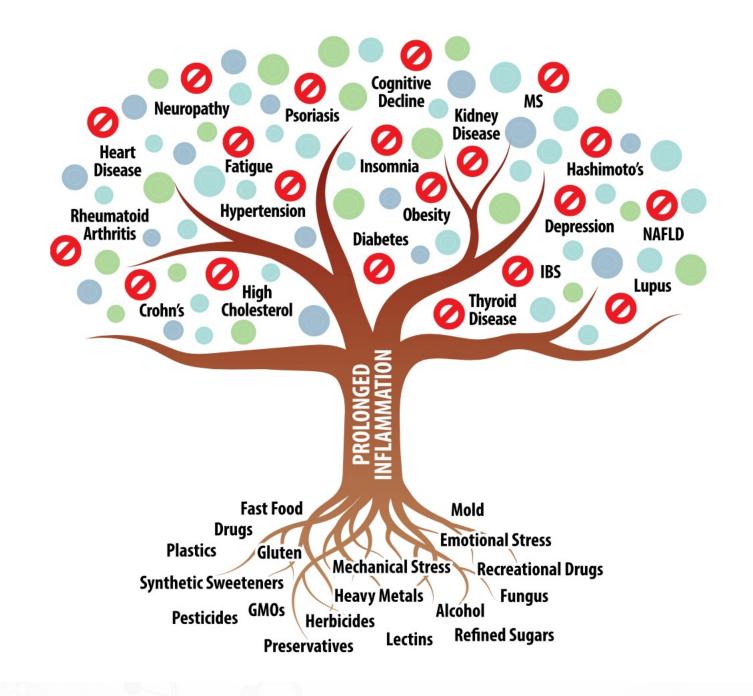
## **Casual Friday Series**

# The "Optimizing Hormones" Conversation Part 3


A Biogenetix Clinical Presentation BIOGENETIX.COM




## Disclaimer

- Information in this presentation is not intended, in itself, to diagnose, treat, reverse, cure, or prevent any disease. While this presentation is based on medical literature, findings, and text, The following statements have not been evaluated by the FDA.
- The information provided in this presentation is for your consideration only as a practicing health care provider. Ultimately you are responsible for exercising professional judgment in the care of your own patients.







- Slow heartbeat or rapid heartbeat (tachycardia).
- Unexplained weight gain or weight loss.
- Fatigue.
- Constipation.
- Diarrhea or more frequent bowel movements.
- Numbness and tingling in your hands.
- Higher-than-normal blood cholesterol levels.
- Depression or anxiety.
- Being unable to tolerate cold temperatures or warm temperatures.
- Dry, coarse skin and hair.
- Thin, warm and moist skin.
- · Irregular body fat distribution.
- Darkened skin in your armpit or the back and sides of your neck (<u>acanthosis</u> nigricans).
- Skin tags (small skin growths).
- Extreme thirst and frequent urination.





- Slow heartbeat or rapid heartbeat (tachycardia).
- Unexplained weight gain or weight loss.
- Fatigue.
- Constipation.
- Diarrhea or more frequent bowel movements.
- Numbness and tingling in your hands.
- Higher-than-normal blood cholesterol levels.
- Depression or anxiety.
- Being unable to tolerate cold temperatures or warm temperatures.
- Dry, coarse skin and hair.
- Thin, warm and moist skin.
- Irregular body fat distribution.
- Darkened skin in your armpit or the back and sides of your neck (<u>acanthosis</u> nigricans).
- Skin tags (small skin growths).
- Extreme thirst and frequent urination.



by ② Gianmaria Salvio \* □ □, ② Marianna Martino □, ② Giulia Giancola □, ② Giorgio Arnaldi † □ □ and ② Giancarlo Balercia † □

Division of Endocrinology, Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, Umberto I Hospital, 60126 Ancona, Italy

\* Author to whom correspondence should be addressed.

Several hormones contribute to ensure penile erection, a neurovascular phenomenon in which nitric oxide plays a major role. Erectile dysfunction (ED), which is defined as the persistent inability to obtain or maintain penile erection sufficient for a satisfactory sexual performance, may be due to arteriogenic, neurogenic, iatrogenic, but also endocrinological causes. The hypothalamus—pituitary axis plays a central role in the endocrine system and represents a fundamental link between the brain and peripheral glands, including gonads. Therefore, the hormonal production of the hypothalamic—pituitary axis can control various aspects of sexual function and its dysregulation can compromise erectile function. In addition, excess and deficiency of pituitary hormones or metabolic alterations that are associated with some pituitary diseases (e.g., Cushing's disease and acromegaly, hypopituitarism) can determine the development of ED with different mechanisms. Thus, the present review aimed to explore the relationship between



Division of Endocrinology, Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, Umberto I Hospital, 60126 Ancona, Italy

All this, however, occurs thanks to the permissive role of androgens (mainly represented by testosterone, T) that regulate sexual behavior and male reproductive function in numerous ways. First of all, they influence the development of the male reproductive tract in early life and affect sexual behavior and libido in the adulthood [2]: sexual complaints are the most specific symptoms of T deficiency (hypogonadism) in adults [3] and can be reversed via T therapy [4]. T upregulates the activity of the enzyme NO synthase (NOS) by endothelial cells (eNOS) and NANC nerves (nNOS) and downregulates the activity of RhoA-ROCK (Ras homolog gene family member A-Rho-associated, coiled coil containing protein kinase), which is involved in the sensitization to calcium of penile smooth muscle cells, leading in both cases to vasodilation of the penile arteries [3].



by ② Gianmaria Salvio \* □ □, ② Marianna Martino □, ② Giulia Giancola □, ② Giorgio Arnaldi † □ □ and ② Giancarlo Balercia † □

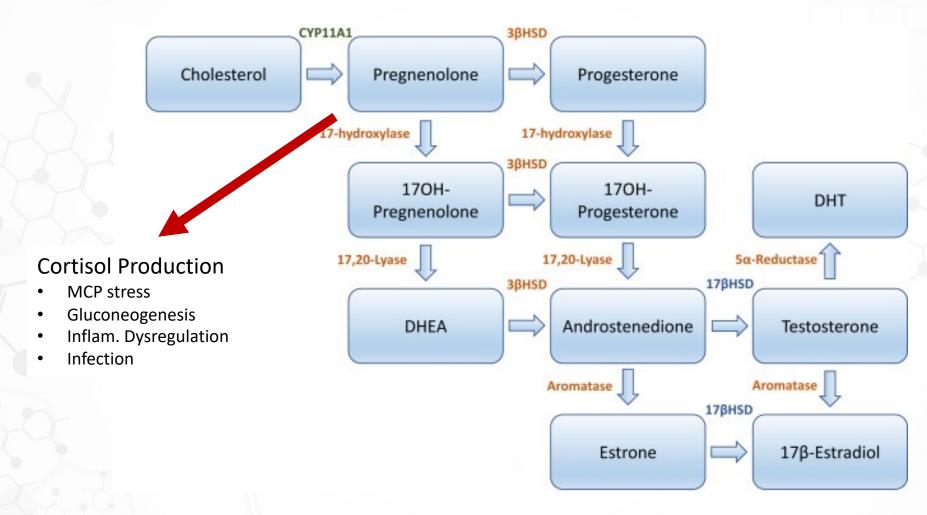
When one of the mechanisms described above is compromised, erectile dysfunction (ED), defined as the persistent inability to obtain or maintain penile erection sufficient for a satisfactory sexual performance [5], occurs. ED has a multifactorial etiology with vascular (due to arterial insufficiency or venous incompetency), neurogenic, endocrinological, or iatrogenic causes, but in most cases, it is determined by impaired penile blood flow due to atherosclerosis. As known, many cardiovascular risk factors are associated with ED, and there is a strong association between ED and the development of cardiovascular disease (CVD) [6]. The damage of endothelial cells, caused by numerous conditions such as hypertension, smoking, and diabetes, results in a reduction of NO released in the corpora cavernosa. In addition, low NOS activity is linked to ED, and it has been observed in conditions such as hypercholesterolemia, diabetes, and advanced age [7] as well as in hypogonadism [2], which is associated with increased cardiovascular mortality [8]. In this regard, several studies have documented an age-dependent reduction in circulating T levels in men (a condition named "Late-onset hypogonadism"—LOH) associated with sexual dysfunction and metabolic syndrome [9] and a recent meta-analysis confirmed that low T levels are a marker of cardiovascular risk in aging males [10]. In addition, chronic conditions such as liver cirrhosis, obesity, and hyperinsulinism may increase levels of sex hormone binding globulin (SHBG), which binds circulating T and limits its biological effects [3]. Despite this, the beneficial effects of T therapy on cardiovascular risk are still debated [11], while those on erectile function in patients with hypogonadism are widely recognized [4].



×

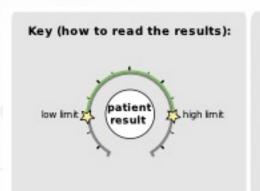
Table 1. Hypothalamic–pituitary diseases associated with erectile dysfunction and proposed mechanisms.

| Dysfunction                      | Causes                                                                                        | Mechanisms                                                                                                                                                                                                                                                      |
|----------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pituitary Hormones Excess        |                                                                                               |                                                                                                                                                                                                                                                                 |
| Hyperprolactinemia               | Pituitary adenoma (prolactinoma) Sellar/parasellar masses Drugs Stalk effect                  | - Secondary hypogonadism due to disruption of GnRH pulsatility and gonadotropin secretion - Reduced libido due to direct effect on the central nervous system                                                                                                   |
| Hypercortisolism                 | Corticotroph adenoma<br>(Cushing's disease)<br>Functional hypercortisolism                    | <ul> <li>Secondary hypogonadism due to disruption of GnRH pulsatility and gonadotropin secretion</li> <li>Primary hypogonadism due to decreased number of Leydig cells in the testes</li> <li>Endothelial dysfunction due to metabolic comorbidities</li> </ul> |
| Acromegaly                       | Pituitary adenoma                                                                             | - Secondary hypogonadism due to disruption of GnRH pulsatility and gonadotropin secretion Endothelial dysfunction due to metabolic comorbidities.                                                                                                               |
| Hypopituitarism                  |                                                                                               |                                                                                                                                                                                                                                                                 |
| Hypogonadotropic<br>hypogonadism | Pituitary adenoma Sellar/parasellar masses Drugs Functional hypogonadism TBI TNS Radiotherapy | <ul> <li>Reduced libido and dysregulation of sexual behavior</li> <li>Endothelial dysfunction due to metabolic comorbidities</li> <li>Reduced NO production in penile tissue due to reduced eNOS and nNOS activity</li> </ul>                                   |
| GHD                              | TBI<br>TNS<br>Radiotherapy                                                                    | - Reduced NO production in penile tissue due to reduced nNOS activity                                                                                                                                                                                           |
| Hypocortisolism                  | TBI<br>TNS<br>Radiotherapy                                                                    | - Unknown                                                                                                                                                                                                                                                       |

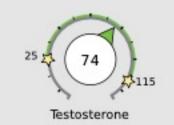



by 😩 Gianmaria Salvio \* 🖾 🕑, 😩 Marianna Martino 🖾, 😩 Giulia Giancola , 😩 Giorgio Arnaldi † 🕑 and

Division of Endocrinology, Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, Umberto I Hospital, 60126 Ancona, Italy


Although evidence suggests an important role for hypothalamic-pituitary hormones in the control of erectile function, the actual incidence of ED in pituitary disorders is poorly understood. Since ED presents an important effect on quality of life, as well as representing an early sign of endothelial dysfunction, it should always be investigated, preferably using validated questionnaires (e.g., IIEF-15 and SIEDY), and treated. In addition to the use of drugs with proven benefit on erectile function such as phosphodiesterase-5 inhibitors, the correction of all cardiovascular risk factors and the restoration of normal pituitary function appear essential in these patients.

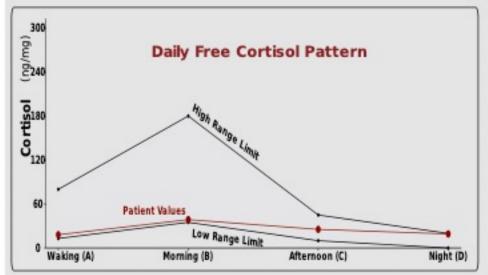







#### 69 yo, DM2, ED, Lantus, BP meds



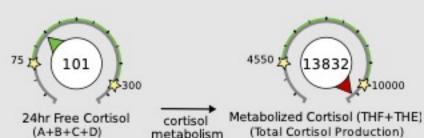





Age Range 18-25 50-115 26-40 40-95 41-60 30-80 >60 25-60

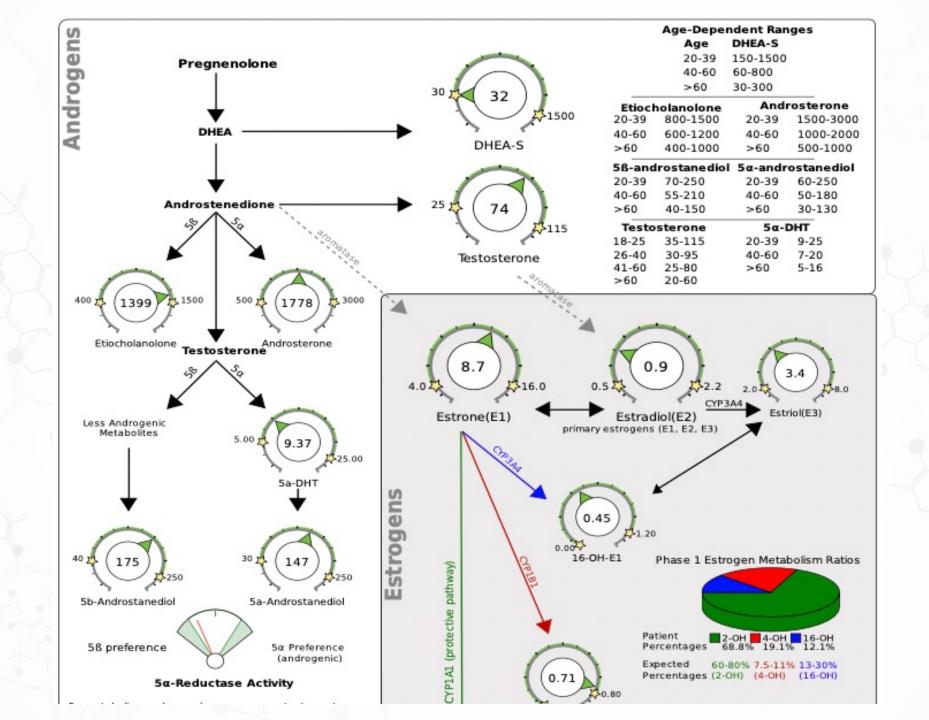
Testosterone

#### Adrenal Hormones See pages 4 and 5 for a more complete breakdown of adrenal hormones




## Total DHEA Production

| Age   | Range     |
|-------|-----------|
| 20-39 | 3000-5500 |
| 40-60 | 2000-4000 |
| >60   | 1000-2500 |




Total DHEA Production (DHEAS + Etiocholanolone + Androsterone)



Free cortisol best reflects tissue levels. Metabolized cortisol best reflects total cortisol production.



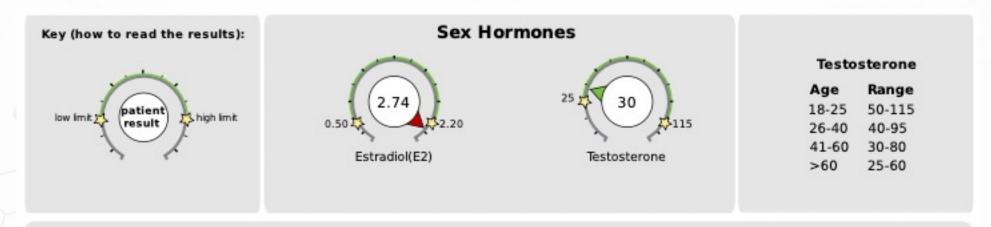


|   | Test              | Current Resu | lt and Flag    | Previous Result and Date      | Units        | Reference Interval |
|---|-------------------|--------------|----------------|-------------------------------|--------------|--------------------|
|   | Chemistries 01    |              |                |                               |              |                    |
| A | Glucose 01        | 166          | High           |                               | mg/dL        | 65-99              |
| A | Hemoglobin A1c 01 | 9.6          | High           |                               | %            | 4.8-5.6            |
|   | Please Note: 01   |              |                |                               |              |                    |
|   |                   | Predia       | betes: 5.7 - 6 | 5.4                           |              |                    |
|   |                   | Diabet       | es: >6.4       |                               |              |                    |
|   |                   | Glycem       | ic control for | r adults with diabetes: <7.0  |              |                    |
|   | Uric Acid 01      | 6.0          |                |                               | mg/dL        | 3.8-8.4            |
|   |                   |              | The            | erapeutic target for gout par | tients: <6.0 |                    |

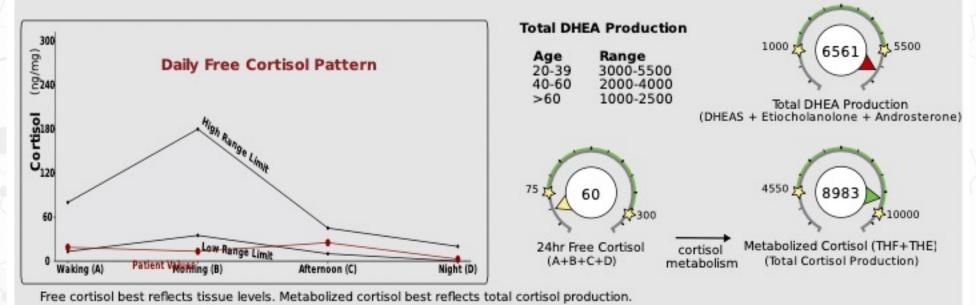
## C-Peptide, Serum

|    | Test                | Current Result and Flag      | Previous Result and Date | Units | Reference Interval |
|----|---------------------|------------------------------|--------------------------|-------|--------------------|
| 10 | C-Peptide, Serum 01 | 2.9                          |                          | ng/mL | 1.1-4.4            |
|    |                     | C-Peptide reference interval | is for fasting patients. | 272   |                    |

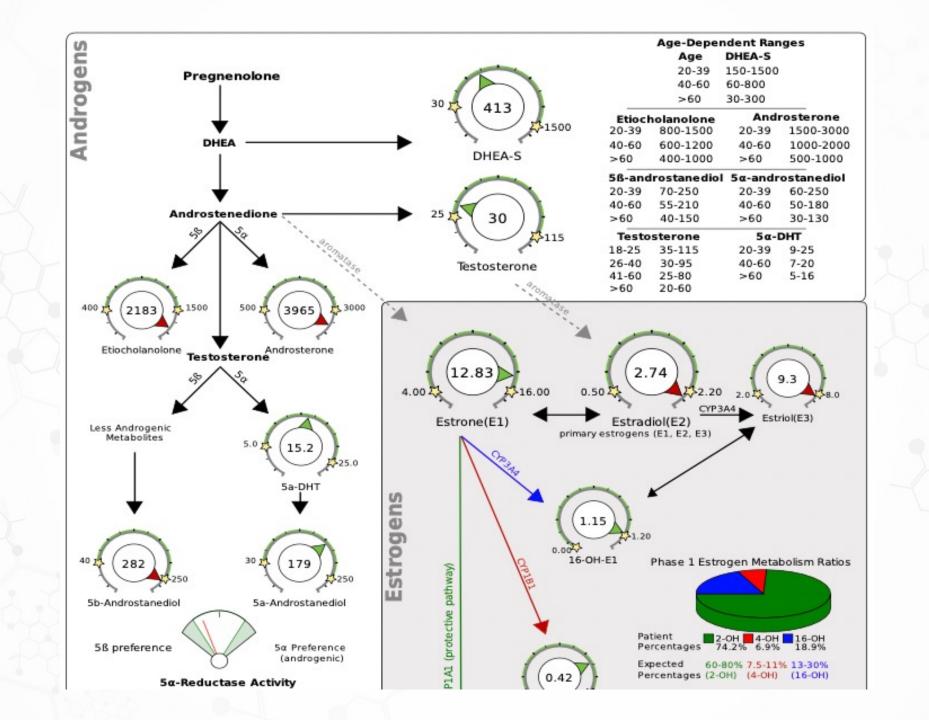
### Insulin


| Test       | Current Result and Flag | Previous Result and Date | Units  | Reference Interval |
|------------|-------------------------|--------------------------|--------|--------------------|
| Insulin 01 | 15.6                    |                          | uIU/mL | 2.6-24.9           |




|   | Cholesterol, Total 01                     | 162  |      |                                                          | mg/dL                  | 100-199   |
|---|-------------------------------------------|------|------|----------------------------------------------------------|------------------------|-----------|
|   | Triglycerides <sup>01</sup>               | 68   |      |                                                          | mg/dL                  | 0-149     |
| ¥ | HDL Cholesterol 01                        | 35   | Low  |                                                          | mg/dL                  | >39       |
|   | VLDL Cholesterol Cal                      | 13   |      |                                                          | mg/dL                  | 5-40      |
| A | LDL Chol Calc (NIH)                       | 114  | High |                                                          | mg/dL                  | 0-99      |
|   | T. Chol/HDL Ratio                         | 4.6  |      |                                                          | ratio                  | 0.0-5.0   |
|   | Please Note: 01                           |      |      | 1/2 Avg.Ris<br>Avg.Ris<br>2X Avg.Ris                     | k 5.0 4.4<br>k 9.6 7.1 |           |
|   | C-Reactive Protein, Cardiac <sup>©1</sup> | 1.10 | Rela | 3X Avg.Ris tive Risk for Future Cardiov Low Average High | mg/L                   | 0.00-3.00 |
|   | Homocyst(e)ine 01                         | 12.2 |      |                                                          | umol/L                 | 0.0-17.2  |




#### 59 yo, DM2, BPH, ED, Metformin, BP meds, TH1 stimulants

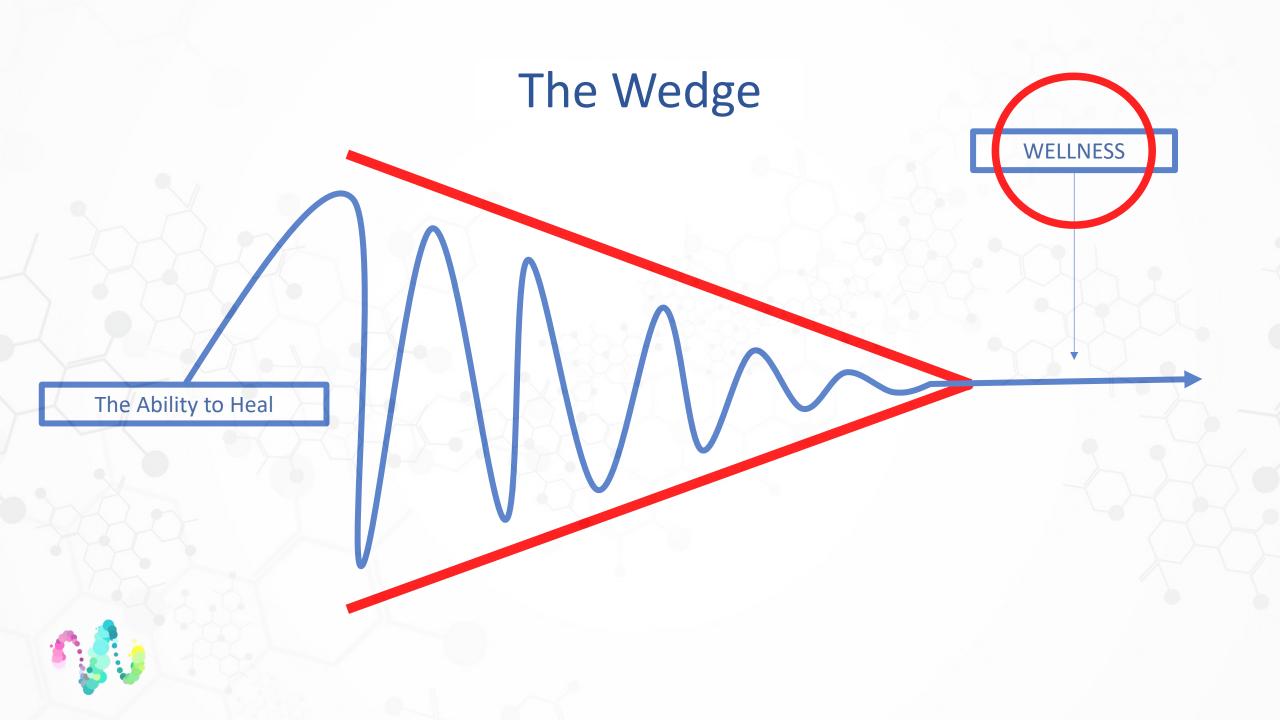


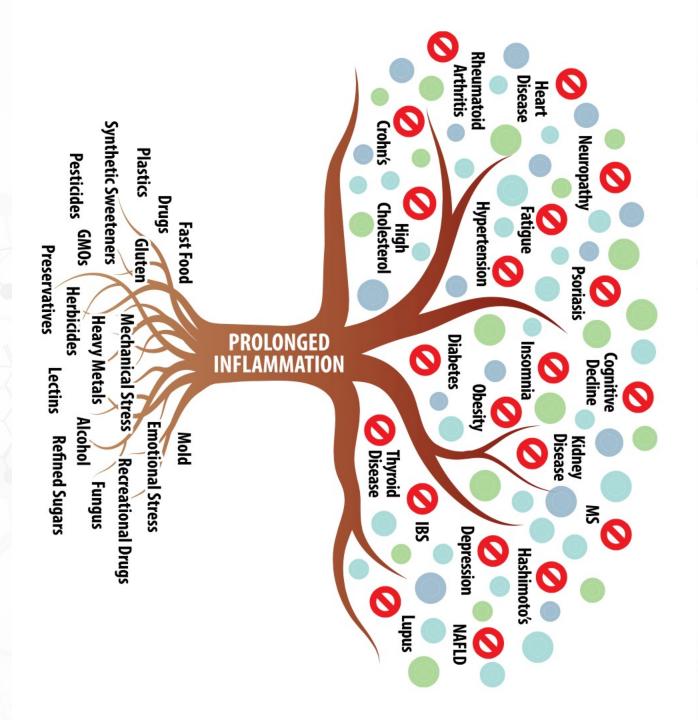
#### Adrenal Hormones See pages 4 and 5 for a more complete breakdown of adrenal hormones








|          | Test                    | Current Resu | lt and Flag    | Previous Re   | sult and Date   | Units       | Reference Interva |
|----------|-------------------------|--------------|----------------|---------------|-----------------|-------------|-------------------|
|          | Chemistries 01          |              |                |               |                 |             |                   |
| •        | Glucose <sup>01</sup>   | 122          | High           | 144           | 03/17/2021      | mg/dL       | 65-99             |
| <b>A</b> | Hemoglobin A1c 01       | 7.5          | High           | 6.4           | 03/17/2021      | %           | 4.8-5.6           |
|          | Please Note: 01         |              |                |               | N               |             |                   |
|          |                         | Predia       | betes: 5.7 - 6 | .4            |                 |             |                   |
|          |                         | Diabet       | es: >6.4       |               |                 |             |                   |
|          |                         |              |                | adulte with   | diabetes: <7.0  |             |                   |
| _        |                         | Glycen       | ic control for | addits with   | diabetes. <7.0  |             |                   |
|          | Uric Acid <sup>01</sup> | 5.2          |                |               |                 | mg/dL       | 3.0-7.2           |
|          |                         |              | The            | rapeutic targ | et for gout pat | ients: <6.0 |                   |
|          | BUN 01                  | 9            |                | 9             | 03/17/2021      | mg/dL       | 6-24              |
| <b>A</b> | Creatinine 01           | 1.13         | High           | 1.21*         | 03/17/2021      | mg/dL       | 0.57-1.00         |
|          | eGFR                    | 56           | Low            |               |                 | mL/min/1.73 | >59               |
|          | BUN/Creatinine Ratio    | 8            | Low            | 7*            | 03/17/2021      |             | 9-23              |
|          |                         |              |                | •             | 00/11/1021      |             | 7.23              |


| Thyroid Peroxidase (TPO)  |                  |                               |                     |         |
|---------------------------|------------------|-------------------------------|---------------------|---------|
| ▲ Ab <sup>⊕1</sup>        | 163              | High                          | IU/mL               | 0-34    |
| Thyroglobulin Antibody 01 | <1.0             |                               | IU/mL               | 0.0-0.9 |
|                           | Thyroglobulin Ar | ntibody measured by Beckman C | coulter Methodology |         |



|                      |                                      | Current                                                                         | Previous Result |
|----------------------|--------------------------------------|---------------------------------------------------------------------------------|-----------------|
|                      | Organochlorine pesticides            |                                                                                 |                 |
|                      | Organophosphate pesticides           | Dimethylphosphate (DMP) , Diethylphosphate (DEP) , Dimethylthiophosphate (DMTP) |                 |
| 2                    | Other pesticides/herbcides           |                                                                                 |                 |
| Environmental Toxins | Phthalate Metabolites                | mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP)                                 |                 |
| mer                  | Parabens                             |                                                                                 |                 |
| viron viron          | Acrylic Metabolites                  |                                                                                 |                 |
| E                    | Other Metabolites                    | Tiglylglycine (TG)                                                              |                 |
|                      | Alkylphenol                          | Bisphenol A (BPA)                                                               |                 |
|                      | Volatile Organic Compounds<br>(VOCs) | 2-Methylhippuric Acid (2MHA)                                                    |                 |
|                      | Urine Creatinine                     |                                                                                 |                 |
| 2                    | Aflatoxin                            | Aflatoxin B2 •                                                                  |                 |
| Mycotoxins V2        | Other                                | Ochratoxin A ., Citrinin .                                                      |                 |
| coto                 | Trichothecenes                       | diacetoxyscirpenol (DAS)                                                        |                 |
| Š                    | Urinary Creatinine                   |                                                                                 |                 |
| Heavy Metals         | Heavy Metals (Creatinine)            | Barium •                                                                        |                 |










## Biogenetix: 833-525-0001



bruno@biogenetix.com



kim@biogenetix.com

