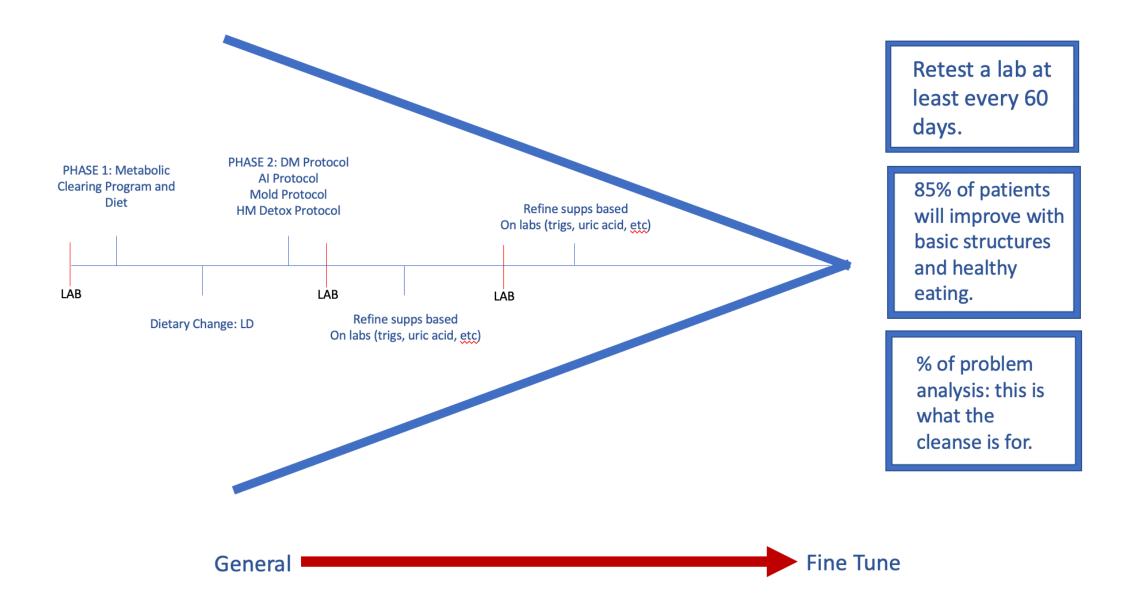
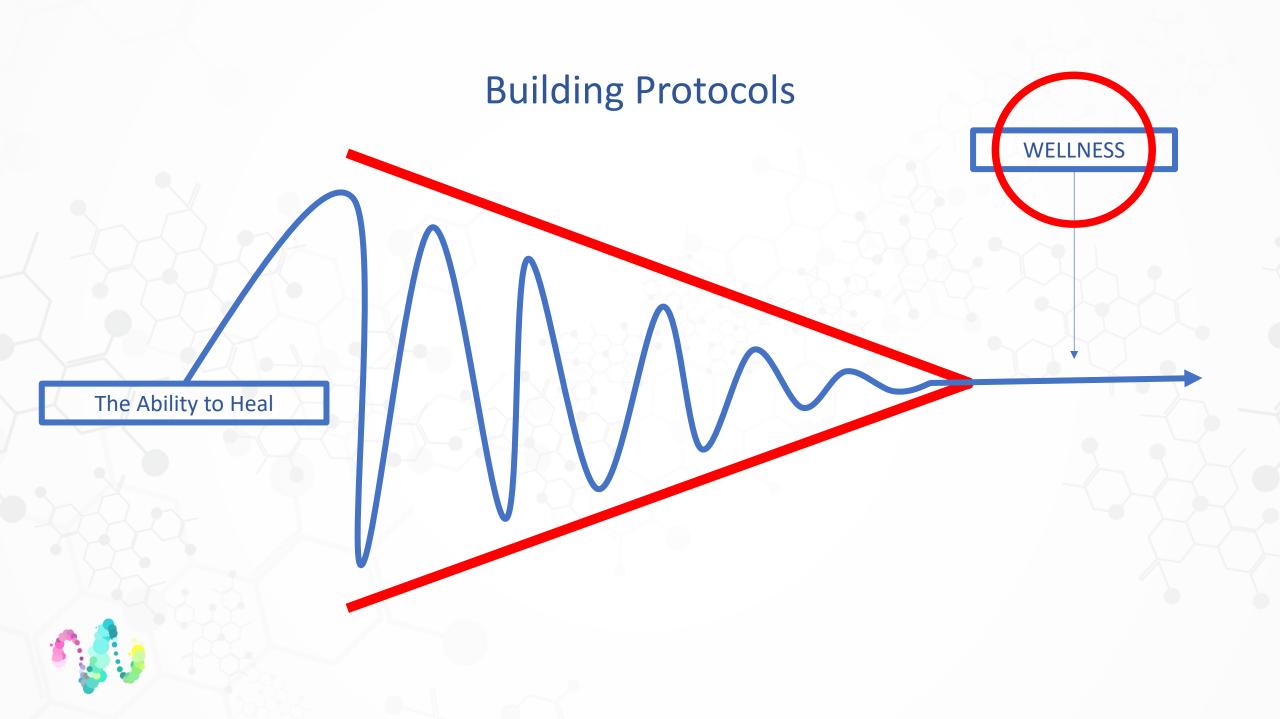
Casual Friday Series GI Assessments, Interventions, and Applications A Biogenetix Clinical Presentation

Biogenetix.com

Disclaimer


- Information in this presentation is not intended, in itself, to diagnose, treat, reverse, cure, or prevent any disease. While this presentation is based on medical literature, findings, and text, The following statements have not been evaluated by the FDA.
- The information provided in this presentation is for your consideration only as a practicing health care provider. Ultimately you are responsible for exercising professional judgment in the care of your own patients.



(Lifestyle + Genetics) x Time = Chronic Health IMPROVEMENT

Int J Mol Sci. 2015 Apr; 16(4): 7493–7519. Published online 2015 Apr 2. doi: 10.3390/ijms16047493

Impacts of Gut Bacteria on Human Health and Diseases

Yu-Jie Zhang,¹ Sha Li,² Ren-You Gan,³ Tong Zhou,¹ Dong-Ping Xu,¹ and Hua-Bin Li^{1,*}

Manickam Sugumaran, Academic Editor

Author information > Article notes > Copyright and License information Disclaimer

Gut bacteria are an important component of the microbiota ecosystem in the human gut, which is colonized by 10¹⁴ microbes, ten times more than the human cells. Gut bacteria play an important role in human health, such as supplying essential nutrients, synthesizing vitamin K, aiding in the digestion of cellulose, and promoting angiogenesis and enteric nerve function. However, they can also be potentially harmful due to the change of their composition when the gut ecosystem undergoes abnormal changes in the light of the use of antibiotics, illness, stress, aging, bad dietary habits, and lifestyle. Dysbiosis of the gut bacteria communities can cause many chronic diseases, such as inflammatory bowel disease, obesity, cancer, and autism. This review summarizes and discusses the roles and potential mechanisms of gut bacteria in human health and diseases.

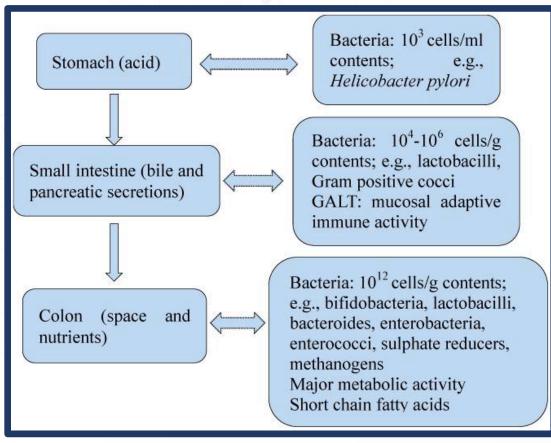
Int J Mol Sci. 2015 Apr; 16(4): 7493–7519. Published online 2015 Apr 2. doi: 10.3390/ijms16047493

Impacts of Gut Bacteria on Human Health and Diseases

Yu-Jie Zhang,¹ Sha Li,² Ren-You Gan,³ Tong Zhou,¹ Dong-Ping Xu,¹ and Hua-Bin Li^{1,*}

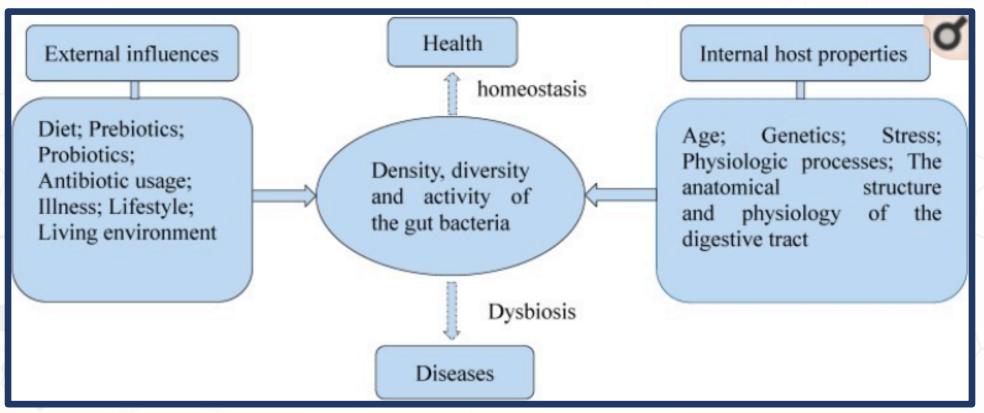
Manickam Sugumaran, Academic Editor

Author information > Article notes > Copyright and License information Disclaimer


stabilizes to a more adult-like profile around the age of one year, usually after the introduction of solid foods [4]. In addition, the composition of the gut bacteria community in the stomach and colon is distinctive, which is mainly due to different physicochemical conditions, such as intestinal motility, pH value, redox condition, nutrients, host secretions (e.g., gastric acid, bile, digestive enzymes, and mucus), and the presence of an intact ileocaecal valve [5]. Additionally, they can be influenced by many factors, such as the use of antibiotics, illness, stress, aging, bad dietary habits and lifestyle [5,6].

Mo

Bacterial Impacts


- Supply Essential Nutrients
- Synthesize Vit K
- Digest Cellulose
- Promote Angiogenesis
- Promote enteric nerve function
- Reductive Reactions (PRE-tox?)
- Prevent antigen and pathogen invasion
- Immune homeostasis

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425030/

Avoid or Adapt?

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425030/

Int J Mol Sci. 2015 Apr; 16(4): 7493–7519. Published online 2015 Apr 2. doi: 10.3390/ijms16047493

Impacts of Gut Bacteria on Human Health and Diseases

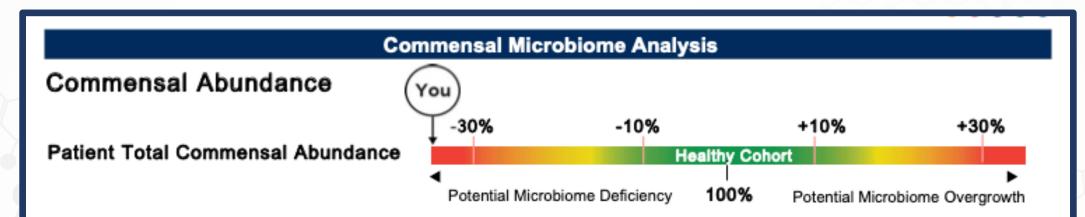
Yu-Jie Zhang,¹ Sha Li,² Ren-You Gan,³ Tong Zhou,¹ Dong-Ping Xu,¹ and Hua-Bin Li^{1,*}

3.2. Gut Bacteria and Obesity

Normal gut bacteria play an important role in diet-induced obesity, because germ-free mice have been reported to be thinner and did not become adipose when subjected to high-fat diet [66]. The high-fat diet altered the composition of bacteria to display higher levels of luminal *Firmicutes* and *Proteobacteria* and lower levels of *Bacteroidetes* [67], indicating that obesity may be associated with decreased diversity and changes in composition of the gut bacteria. Gut bacteria is an important determinant of susceptibility to obesity and related metabolic diseases. The ratio of *Firmicutes* to *Bacteroides* has been found to be correlated to body weight, with the ratio being higher in obese people [68]. Gut bacteria could also affect obesity by promoting chronic inflammatory status [69]. In addition, *Clostridium difficile* infections may be another possibility of causing obesity [70]. Gut bacteria may affect obesity through regulation of the microbiota-brain-gut axis by its metabolites. Overweight individuals have more faecal SCFAs than lean

Condition Specific

Some examples of dysbiosis found in human diseases.


- Obesity
- Diabetes, both type 1 and type 2
- Liver disease
- Pancreatic dysfunction (enzymatic)
- Heart Disease
- Cancer
- HIV
 - Autism

Disease	Model	Dysbiosis	Sample	References
	Mice	↓Lactobacilli ↑Clostridiales	Colonic	[<u>56]</u>
Ulcerative colitis	Mice	†E. coli	Colonic	[<u>57]</u>
	Humans	↓ <i>R</i> . hominis ↓ <i>F. prausnitzii</i>	Fecal	[58]
Crohn's disease	Humans	↓Bacteroides ↓Bifidobacteria	Fecal	[<u>61]</u>
Obesity	<i>↓Bacto</i> Obesity Mice ↑ <i>Firm</i> ↑ <i>Proteo</i>		Fecal	[67]
	× .			$\langle \rangle$
Rheumatic arthritis Humans		↓Bifidobacteria ↓Bacteroides fragilis	Fecal	[127]

	Functional Imbalance Scores							
	Key <2 : Low Need for Support 23 : Optional Need for Support 46 : Moderate Need for Support 7-10 : High Need for Support							
	Need for Digestive Support	Need for Inflammation Modulation	Need for Microbiome Support	Need for Prebiotic Support	Need for Antimicrobial Support			
			DYSBIOSIS	METABOLIC IMBALANCE				
Biomarkers	Fecal Fats A Pancreatic Elastase Products of Protein Breakdown	Calprotectin Eosinophil Protein X Secretory IgA Occult Blood	Total Abundance ▼ PP Bacteria/Yeast △ Reference Variance △ IAD/Methane Score ●	Total SCFA'sTSCFA (%)Tn-Butyrate Conc.Image: Seta-glucuronidaseBeta-glucuronidaseImage: Seta-glucuronidase	Total Abundance ▼ PP Bacteria/Yeast △ Parasitic Infection ● Pathogenic Bacteria ●			
Therapeutic Support Options	 Digestive Enzymes Betaine HCI Bile Salts Apple Cider Vinegar Mindful Eating Habits Digestive Bitters 	 Elimination Diet/ Food Sensitivity Testing Mucosa Support: Slippery Elm, Althea, Aloe, DGL, etc. Zinc Carnosine L-Glutamine Quercetin Turmeric Omega-3's GI Referral (If Calpro is Elevated) 	 Pre-/Probiotics Increase Dietary Fiber Intake Consider SIBO Testing Increase Resistant Starches Increase Fermented Foods Meal Timing 	 Pre-/Probiotics Increased Dietary Fiber Intake Increase Resistant Starches Increase Fermented Foods Calcium D-Glucarate (for high beta-glucuronidase) 	 Antibiotics (if warranted) Antimicrobial Herbal Therapy Antiparasitic Herbal Therapy (if warranted) Saccharomyces boulardii 			

680

Total Commenal Balance: The total commensal abundance is a sum-total of the reported commensal bacteria compared to a healthy cohort. Low levels of commensal bacteria are often observed after antimicrobial therapy, or in diets lacking fiber and/or prebiotic-rich foods and may indicate the need for microbiome support. Conversely, higher total commensal abundance may indicate potential bacteria overgrowth or probiotic supplementation.

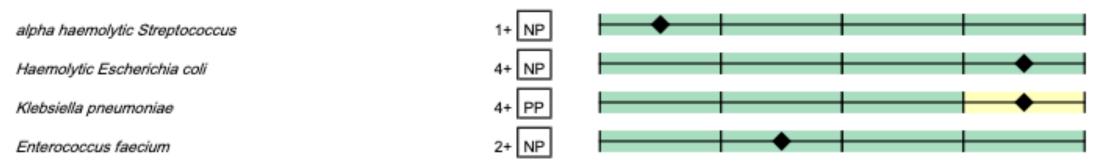
Lactobacillus Family

Relative Commen	sal Abu	ndance		
	-50%	-25% Jaithy	+25 Cohort	25%
Bacteroidetes Phylum				Increase in Bacteroides spp. and Odoribacter spp. seen in animal-based
bacteroidetes Filyidin				diets; Prevotella increased with plant-based diet
Firmicutes Phylum				Contains many butyrate-producers; most species responsive to
				plant-based diets; Faecalibacterium spp. is anti-inflammatory
				Bifidobacterium is increased with plant-based diets; Collinsella
Actinobacteria Phylum				may be proinflammatory, and is elevated with a Western-diet
Proto ob octorio, Dhuduro				Some species may be proinflammatory; E. coli consumes simple
Proteobacteria Phylum				sugars and is lower in individuals on plant-based diets
				Methanobrevibacter smithii is associated with methane
Euryarchaeota Phylum				production and with diets high in carbohydrates
Fusobacteria Phylum	NR			Certain Fusobacterium spp. may be proinflammatory and
	NK			increased on low fiber, high fat diets
				Akkermansia spp. is involved in gut membrane integrity and
Verrucomicrobia Phylum				may be increased with polyphenols and prebiotics

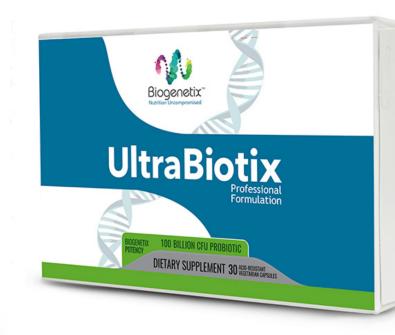
Relative Abundance: The relative abundance compares the quantity of each of 7 major bacterial phyla to a healthy cohort. This can indicate broader variances in the patient's gut microbiome profile. Certain interventions may promote or limit individual phyla when clinically appropriate. Please refer to Genova's Stool Testing Support Guide for more information on modulation of commensal bacteria through diet & nutrient interventions. ***Approximately 75% of the healthy cohort had below detectable levels of *Methanobrevibacter smithii*.

Bifidobacterium Family

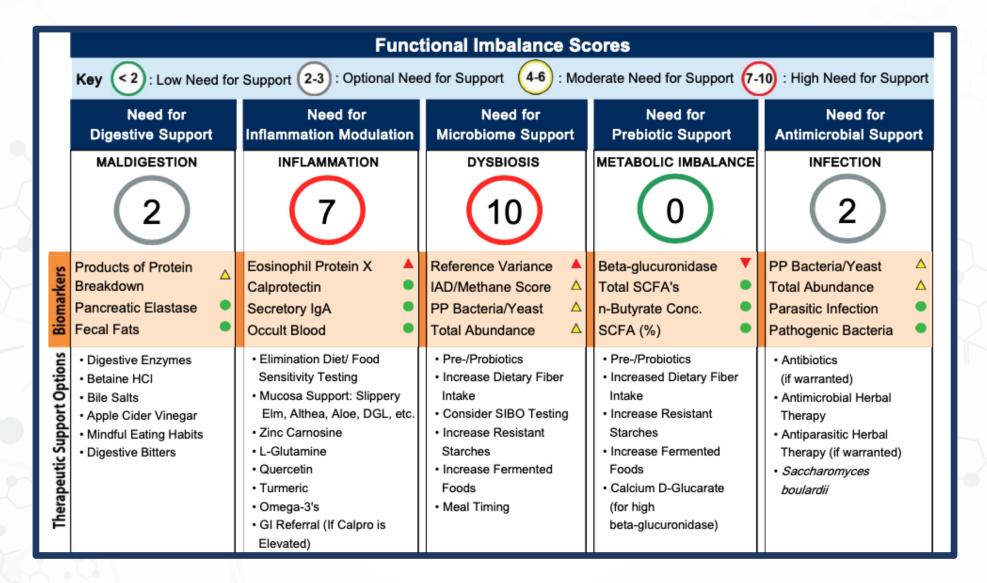
Relative Commens	al Abu	undance		
	-50%	-25%	+25% Cohort	5 5
Bacteroidetes Phylum				Increase in Bacteroides spp. and Odoribacter spp. seen in animal-based
Dacteroidetes Phylam				diets; Prevotella increased with plant-based diet
Firmieutee Dhudum				Contains many butyrate-producers; most species responsive to
Firmicutes Phylum				plant-based diets; Faecalibacterium spp. is anti-inflammatory
A still sharts siz Dhutum				Bifidobacterium is increased with plant-based diets; Collinsella
Actinobacteria Phylum				may be proinflammatory, and is elevated with a Western-diet
Desta cha staria Dhulum				Some species may be proinflammatory; E. coli consumes simple
Proteobacteria Phylum				sugars and is lower in individuals on plant-based diets
Furnishes sta Dhuduna				Methanobrevibacter smithii is associated with methane
Euryarchaeota Phylum				production and with diets high in carbohydrates
Fusobacteria Phylum	N			Certain Fusobacterium spp. may be proinflammatory and
	INF	`		increased on low fiber, high fat diets
Manua ani ankia Dhudum				Akkermansia spp. is involved in gut membrane integrity and
Verrucomicrobia Phylum				may be increased with polyphenols and prebiotics

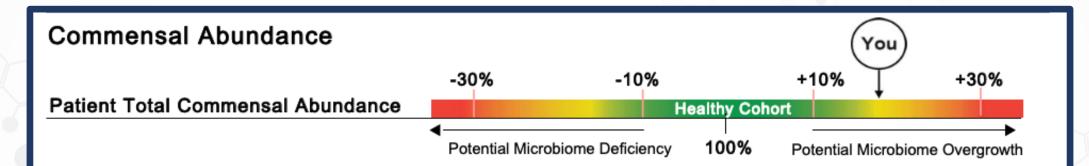

Relative Abundance: The relative abundance compares the quantity of each of 7 major bacterial phyla to a healthy cohort. This can indicate broader variances in the patient's gut microbiome profile. Certain interventions may promote or limit individual phyla when clinically appropriate. Please refer to Genova's Stool Testing Support Guide for more information on modulation of commensal bacteria through diet & nutrient interventions. ***Approximately 75% of the healthy cohort had below detectable levels of *Methanobrevibacter smithii*.

Methodology: GC-FID, Automated Chemistry, EIA	Result	QUINTILE DISTRIBUTION 1st 2nd 3rd 4th 5th	Reference Range			
	Digestion and Absorption					
Pancreatic Elastase 1 †	>500	100 200	>200 mcg/g			
Products of Protein Breakdown (Total*) (Valerate, Isobutyrate, Isovalerate)	6.8	⊢ + + + →	1.8-9.9 micromol/g			
Fecal Fat (Total*)	39.2 H		3.2-38.6 mg/g			
Triglycerides	1.0	⊢ + + + →	0.3-2.8 mg/g			
Long-Chain Fatty Acids	28.0	⊢	1.2-29.1 mg/g			
Cholesterol	8.7 H	<u>⊢ </u>	0.4-4.8 mg/g			
Phospholipids	1.5		0.2-6.9 mg/g			

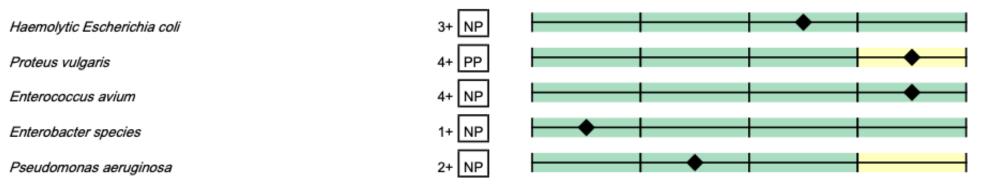


Additional Bacteria



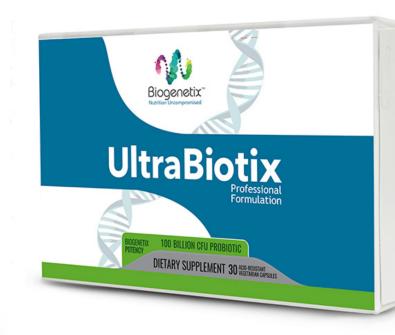


Total Commenal Balance: The total commensal abundance is a sum-total of the reported commensal bacteria compared to a healthy cohort. Low levels of commensal bacteria are often observed after antimicrobial therapy, or in diets lacking fiber and/or prebiotic-rich foods and may indicate the need for microbiome support. Conversely, higher total commensal abundance may indicate potential bacteria overgrowth or probiotic supplementation.

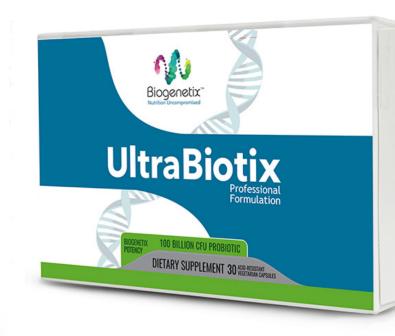


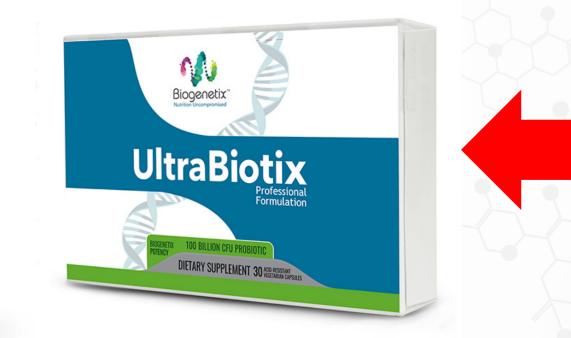
Relative Commensal Abundance

	-5	0% -2	Healthy	+25 Cohort	%
Bacteroidetes Phylum					Increase in Bacteroides spp. and Odoribacter spp. seen in animal-based
Bacteroidetes Filyium					diets; Prevotella increased with plant-based diet
Firmieute e Dhudure					Contains many butyrate-producers; most species responsive to
Firmicutes Phylum					plant-based diets; Faecalibacterium spp. is anti-inflammatory
Actinobacteria Phylum					Bifidobacterium is increased with plant-based diets; Collinsella
					may be proinflammatory, and is elevated with a Western-diet
Protochasteria Phylum					Some species may be proinflammatory; E. coli consumes simple
Proteobacteria Phylum					sugars and is lower in individuals on plant-based diets
***					Methanobrevibacter smithii is associated with methane
Euryarchaeota Phylum					production and with diets high in carbohydrates
Fusobacteria Phylum					Certain Fusobacterium spp. may be proinflammatory and
					increased on low fiber, high fat diets
Verrucomicrobia Phylum					Akkermansia spp. is involved in gut membrane integrity and
					may be increased with polyphenols and prebiotics



Additional Bacteria





Biogenetix: 833-525-0001

zeb@biogenetix.com

kim@biogenetix.com

