Casual Friday Series

Functional Blood Chemistry Series Pt. 14: Wastes (II)

A Biogenetix Clinical Presentation BIOGENETIX.COM

Disclaimer

- Information in this presentation is not intended to diagnose, treat, reverse, cure, or prevent any disease. While this presentation is based on medical literature, findings, and text, The following statements have not been evaluated by the FDA.
- The information provided in this presentation is for your consideration only as a practicing health care provider. Ultimately you are responsible for exercising professional judgment in the care of your own patients.

Wastes

- Creatinine
- Uric acid
- Bilirubin
- Blood urea nitrogen (BUN)
- Bile Acids

Creatinine - Increased

Cause	Reason	Additional Inquiry
Kidney dysfunction	Poor kidney function leads to decreased filtration and excretion of creatinine, thus	Evaluate other kidney markers, eg BUN.
	elevating serum creatinine levels.	
Dehydration	Hemoconcentration.	Evaluate other dehydration markers.
Increased muscle	More muscle means more creatine and thus,	
mass	more creatinine.	
Hyperthyroidism	Increased muscle breakdown	Evaluate thyroid markers.
High meat intake	Meat contains creatine and thus can lead to increased creatinine levels.	Diet history.
Ketones	Increases creatinine levels considerably by competing for filtration in the liver.	Client history.

Creatinine - Decreased

Cause	Reason	Additional Inquiry
Decreased muscle	Less muscle means less creatine.	
mass		
Poor dietary protein	Meat contains creatine. Poor protein digestion	Diet history. GI symptoms.
intake or absorption	or absorption can lead to low creatinine levels.	

Interfering Factors		
Elevated	Decreased	
High ascorbic acid intake	Increased bilirubin and glucose levels.	

Uric Acid - Elevated

Elevated - If uric acid is elevated above either the optimal or laboratory reference range, it is either increased production, decreased excretion, or a combination of both.

Cause	Reason	Additional Inquiry
Gout	Excessive breakdown of purines	Ask about history of gout and/or systemic joint pain
Kidney dysfunction	Poor filtration and excretion of uric acid, thus keeping serum levels elevated	Evaluate BUN, creatinine, phosphorus; urinalysis
Excess alcohol intake	Hepatocellular destruction	Ask about alcohol intake
Starvation and/or extreme calorie restriction	Catabolism of proteins and thus purine	Diet history
Hypothyroidism	Association	Evaluate TSH
Hyperlipidemia	Association	Evaluate cholesterol

Uric Acid - Elevated

Liver dysfunction	Excess destruction of hepatic cells	Evaluate AST, ALT, GGT, Alk Phos, LDH
Hemolytic anemia	Excess destruction of cells	Evaluate CBC markers
Excess consumption of	Excess fructose increases conversion of ATP to inosine;	Diet journal - this is huge in diabetes cases!
fructose	increases synthesis of purines via the pentose phosphate	
	pathway; fructose may also decrease uric acid excretion	
Chronically elevated	Association	Evaluate glucose, hemoglobin A1C
serum glucose		
Fungal infection	Some researchers consider uric acid to be a mycotoxin	
	produced by yeast and fungus	
Ketogenic diet	May impair ability of kidneys to excrete uric acid due to	Inquire about diet; ketones in urine; CD cases
	competition with ketones. Alternatively, acidic urine	
	increases uric acid reabsorption.	
High supplemental		Supplement history
niacin intake		
High protein diet	More protein typically means more purine intake and	Diet journal
	thus uric acid production	
Excess acidity	Excess acidity can lead to acidity of the urine, which	Acidity is often correlated with blood sugar
	tends to reabsorb uric acid leading to higher serum	dysregulation; low CO2 levels can indicate
	levels.	hyperacidity

Uric Acid - Decreased

Cause	Reason	
Molybdenum	Xanthine oxidase is a molybdenum dependent enzyme.	Ask about increased sensitivity to smells
deficiency	Low levels of molybdenum may lead to decreased uric	and/or consumed sulfites/nitrites
	acid production.	(molybdenum also used in sulfite oxidase)
Zinc deficiency	May increase urinary uric acid excretion; low zinc can	Evaluate alk phos; skin issues; taste acuity
	also lead to high copper, which can negatively impact	issues
	iron (See below)	
Iron deficiency	May cause relative increase in copper, which may	Evaluate ferritin, TIBC, CBC markers
	displace iron with uric acid production	
Low purine intake (eg		Diet journal
vegetarian)		
Oxidative stress	Uric acid is an abundant serum antioxidant. If oxidative	Evaluate bilirubin and GGT. Low bilirubin
	stress is high, uric acid levels may be decreased.	and elevated GGT may further indicate
		oxidative stress.
Excess alkalinity	Generally the more alkaline the blood, the more	High CO2 levels can indicate hyperalkalinity
	alkaline the urine, which is associated with higher levels	
	of excretion of uric acid and thus lower serum levels.	

Bilirubin - Elevated

Cause	Reason	Additional Inquiry
Excess hemolysis	Excess red blood cell breakdown increases	
	bilirubin (indirect/unconjugated).	
Liver dysfunction	The liver conjugates bilirubin. If the liver is not	Evaluate liver markers.
	functioning properly, indirect/unconjugated	
	bilirubin will be elevated.	
Bile duct obstruction	Bilirubin is cleared from the liver via the biliary	Evaluate alkaline phosphatase and GGT.
	ducts into the intestines. Thus if the biliary ducts	
	are obstructed, conjugated/direct bilirubin will	
	enter into circulation.	
Gilbert's Syndrome	Genetic cause of elevated bilirubin.	Ask client if they have a history of
		elevated bilirubin. If so, likely Gilbert's

Bilirubin - Decreased

Cause	Reason	
Oxidative stress	Bilirubin can act as an antioxidant and thus, oxidative stress may lower levels.	Evaluate uric acid and GGT as well.
Zinc deficiency	Biliverdin reductase is a zinc dependent enzyme and converts biliverdin to bilirubin, thus leading to low bilirubin levels.	Evaluate alkaline phosphatase.

Can vaping increase bilirubin?

Nicotine Tob Res. 2014 Aug; 16(8): 1145–1149. Published online 2014 May 8. doi: <u>10.1093/ntr/ntu067</u> PMCID: PMC4155425 PMID: <u>24812024</u>

Smoking Cessation Is Followed by Increases in Serum Bilirubin, an Endogenous Antioxidant Associated With Lower Risk of Lung Cancer and Cardiovascular Disease

Stephanie S. O'Malley, PhD, 2, 2 Ran Wu, MS, 1 Susan T. Mayne, PhD, 2, 3 and Peter I. Jatlow, MD 4

Although it is widely known that unconjugated bilirubin can be elevated in hemolytic diseases and can be neurotoxic at very high levels in newborns (Watchko & Tiribelli, 2013), unconjugated bilirubin, the primary form of bilirubin circulating in healthy individuals, is also a powerful antioxidant (Rizzo et al., 2010; Stocker, Yamamoto, McDonagh, Glazer, & Ames, 1987) at levels within the normal reference range. Thus, while seemingly counterintuitive, bilirubin has been inversely associated with risk of a number of disorders, including pulmonary disease (Horsfall et al., 2011), cardiovascular disease (Hopkins et al., 1996; Madhavan, Wattigney, Srinivasan, & Berenson, 1997), diabetes (Cheriyath et al., 2010), rheumatoid arthritis (Fischman et al., 2010), colon cancer risk (Zucker, Horn, & Sherman, 2004), and all-cause and cancer mortality (Temme, Zhang, Schouten, & Kesteloot, 2001). Of note, bilirubin concentrations recently emerged from metabolic profiling as the strongest predictor of lung cancer risk in smokers following a multiphase validation study (Zhang et al., 2013).

Nicotine Tob Res. 2014 Aug; 16(8): 1145–1149. Published online 2014 May 8. doi: <u>10.1093/ntr/ntu067</u> PMCID: PMC4155425 PMID: <u>24812024</u>

Smoking Cessation Is Followed by Increases in Serum Bilirubin, an Endogenous Antioxidant Associated With Lower Risk of Lung Cancer and Cardiovascular Disease

Stephanie S. O'Malley, PhD, 2, 2 Ran Wu, MS, 1 Susan T. Mayne, PhD, 2, 3 and Peter I. Jatlow, MD 4

The concordance between the negative health consequences of smoking, including those recently highlighted by the Surgeon General (U.S. Department of Health and Human Services, 2014) and those associated with lower bilirubin concentrations, is striking. Numerous studies have found that smokers have lower bilirubin levels than nonsmokers (Hopkins et al., 1996; Madhavan et al., 1997; Merz, Seiberling, & Thomann, 1998; Van Hoydonck, Temme, & Schouten, 2001; Zucker et al., 2004). The possibility that smoking leads to reductions in bilirubin, which in turn may contribute to smoking-related disease though diminished availability of this endogenous antioxidant, is intriguing. One possible mechanism for bilirubin

In conclusion, our study is the first to document that smoking cessation leads to increases in bilirubin concentrations using a longitudinal design. This finding is consistent with cross-sectional studies suggesting a direct role for smoking cessation in increasing bilirubin concentrations. Moreover, we demonstrate that these changes occur shortly after quitting and posit that these modest increases in bilirubin, an endogenous antioxidant, may contribute to some of the early benefits of quitting smoking.

Blood Urea Nitrogen (BUN)

- Blood Urea Nitrogen (BUN) is the excretory component of protein and amino acid metabolism from the liver.
- Specifically, the liver removes amine groups (NH3) from amino acids, which can create ammonia, which is toxic to the body. Thus the liver synthesizes urea as a means of disposing excess ammonia from the body.
- Urea enters circulation and is excreted via the kidneys.

Blood Urea Nitrogen (BUN)

Traditional Reference Range 5-26 mg/dL Optimal Reference Range 12-17 mg/dL

Blood Urea Nitrogen - Elevated

Cause	Reason	Additional Inquiry
High protein diet	High protein diet leads to more amino acids, which leads to excess urea production.	Client history and diet journal.
Dehydration	Hemoconcentration. Could be secondary to hypoadrenal function.	Evaluate other dehydration markers.
Kidney dysfunction	Because the kidney clears urea, if the kidneys are dysfunctional, urea will build up in circulation.	Evaluate other kidney markers.
Fatty Liver	Mechanism unknown. One study demonstrated that individuals with non-alcoholic fatty liver had elevated BUN.	Evaluate other liver markers. Client history.
Catabolic states	Due to increased amino acid turnover, catabolic states, such as extreme dieting, can cause elevations in BUN.	Client history.

Blood Urea Nitrogen - Decreased

Cause	Reason	Additional Inquiry
Poor protein intake,	Urea is a byproduct of amino acid metabolism	Client history. GI symptoms and function.
digestion or	and as such, if protein is low due to intake,	
absorption	digestion or absorption, BUN can be low.	
Severe liver disease	The liver is responsible for the urea cycle. If the	Evaluate other liver markers.
	liver is dysfunctional, it will not adequately	
	produce urea.	
Possible B6	Vitamin B6 (pyridoxine) is responsible for	Evaluate AST, ALT and B6 deficiency signs
deficiency	transamination reactions, which is necessary for	and symptoms.
	non-essential amino acid synthesis. Thus if B6 is	
	low, urea may be low as well.	
Excess hydration	Excessive hydration is difficult to attain due to	
	the body's regulatory mechanisms. However	
	hormonal influences can impact this, such as the	
	adrenals and pituitary glands.	

BUN/Albumin Ratio

- The BUN/Albumin ratio has been used clinically to evaluate risk in certain diseased population, such as those with pulmonary disease.
- However, it may have clinical utility in a nutritional practice as BUN can be elevated in dehydration and albumin can be decreased in infection, inflammation, and liver dysfunction, thus increasing the BUN/albumin ratio.
- No studies have been conducted using the BUN/albumin ratio in a nutritional setting but using optimal values for each marker, it would seem a value of <4.0 is desirable.

Bile Acids

- Traditionally understood to be involved in emulsification of ingested fat, allowing pancreatic enzymes (lipase, co-lipase) to breakdown triacylglycerols for absorption in the small intestine
- Involved in the removal of cholesterol, hormones, and toxins

Serum Bile Acids

- A decrease in hepatic blood flow, and/or hepato-celluar damage, or any compromise in liver function will increase serum bile acids
- Test for liver function, where as AST and ALT reflect liver tissue destruction
- Will likely show liver dysfunction well before elevations in liver-based enzymes
- Has highest sensitivity for early stage liver dysfucntion

Serum Bile Acids

- May be of benefit in identifying hepatic dysfunction as a result of chemical or environmental injury
 - 73% of patients exposed to organic solvents had increased TBA (total bile acids), whereas GGT, ALT, AST, and bilirubin were only elevated 8, 3, 2 and 1% respectively
- Useful in minor hepatic derangements

Bile Acids

Traditional reference range: 4.7-24.5 umol/L (LabCorp) <19 nmol/mL (Mayo) <10 umol/L (obstetric cholestasis)

Optimal reference range: 4.7-10 umol/L

Bile Acid - Elevated

Cause	Reason	Additional Inquiry
Biliary tree	Poor elimination of bile from the liver, through	Evaluate bilirubin, alkaline phosphatase,
dysfunction	the bile ducts, to the gall bladder and intestines.	and/or GGT. If elevated, may be biliary
		tree dysfunction.
Liver dysfunction	Hepatic cholestasis, or blockages or liver ducts responsible for the transport of bile.	Evaluate AST, ALT, albumin, BUN.
Decreased GI		Patient symptoms; slow transit time
motlitiy		

Bile Acid - Decreased

Cause	Reason	Additional Inquiry
Decreased bile	Poor bile synthesis due to low cholesterol, low	Evaluate cholesterol, digestion, and other
synthesis	taurine/glycine, low reducing agents (NADPH),	liver markers.
	or liver dysfunction.	
Bile acid	Significant digestive (ileal) dysfunction	Patient history of digestive symptoms.
malabsorption		
Increased GI motility		Patient symptoms; increased transit time
		test

59 yo female, levothyroxine, omeprazole, statin, pain meds.

Comp. Metabolic Panel (14)

 Test	Current Result and Flag		Previous Result and Date	Units	Reference Interval
Glucose ⁰¹	88			mg/dL	70-99
 BUN ⁰¹	21			mg/dL	6-24
Creatinine ⁰¹	0.75			mg/dL	0.57-1.00
eGFR	92			mL/min/1.73	>59
BUN/Creatinine Ratio	28	High			9-23
Sodium ⁰¹	136			mmol/L	134-144
Potassium ⁰¹	3.9			mmol/L	3.5-5.2
Chloride ⁰¹	96			mmol/L	96-106
Carbon Dioxide, Total ⁰¹	24			mmol/L	20-29
Calcium ⁰¹	10.3	High		mg/dL	8.7-10.2
Protein, Total ⁰¹	7.1			g/dL	6.0-8.5

Albumin ⁰¹	4.7		g/dL	3.8-4.9
Globulin, Total	2.4		g/dL	1.5-4.5
A/G Ratio	2.0			1.2-2.2
Bilirubin, Total ⁰¹	0.4		mg/dL	0.0-1.2
Alkaline Phosphatase ⁰¹	204	High	IU/L	44-121
AST (SGOT) 01	17		IU/L	0-40
ALT (SGPT) ⁰¹	19		IU/L	0-32

57 yo female, basaglar, farxiga, BP meds, Statins.

Comp. Metabolic Panel (14)

	Test	Current Resul	t and Flag	Previous Result and Date	Units	Reference Interval
	Glucose ⁰¹	102	High		mg/dL	65-99
	BUN ⁰¹	34	High		mg/dL	6-24
	Creatinine ⁰¹	1.65	High		mg/dL	0.57-1.00
V	eGFR	36	Low		mL/min/1.73	>59
	BUN/Creatinine Ratio	21				9-23
	Sodium ⁰¹	140			mmol/L	134-144
	Potassium ⁰¹	5.0			mmol/L	3.5-5.2
	Chloride ⁰¹	103			mmol/L	96-106
V	Carbon Dioxide, Total ⁰¹	19	Low		mmol/L	20-29
	Calcium 01	9.5			mg/dL	8.7-10.2
	Protein, Total ⁰¹	6.8			g/dL	6.0-8.5
_	Albumin ⁰¹	4.7			g/dL	3.8-4.9

Urinalysis (No Micro)

	Test	Current Resu	lt and Flag	Previous Result and Date	Units	Reference Interval
	Specific Gravity ⁰¹	1.020				1.005-1.030
	pH ⁰¹	5.5				5.0-7.5
	Urine-Color ⁰¹	Yellow				Yellow
-	Appearance ⁰¹	Cloudy	Abnormal			Clear
•	WBC Esterase ⁰¹	1+	Abnormal			Negative
•	Protein ⁰¹	2+	Abnormal			Negative/Trace
	Glucose ⁰¹	1+	Abnormal			Negative
	Ketones ⁰¹	Negative				Negative
-	Occult Blood ⁰¹	Trace	Abnormal			Negative
	Bilirubin ⁰¹	Negative				Negative
	Urobilinogen,Semi-Qn ⁰¹	0.2			mg/dL	0.2-1.0
_	Nitrite, Urine ⁰¹	Negative				Negative

Homocyst(e)ine

	Test Current Result and Flag		ag Previous Result and Date	Units	Reference Interval		
	Homocyst(e)ine ⁰¹	16.9 H	ligh	umol/L	0.0-14.5		
Ur	ic Acid						
Test		Current Result and Fla	ag Previous Result and Date	Units	Reference Interval		
	Uric Acid ⁰¹	7.0		mg/dL	3.0-7.2		
		Therapeutic target for gout patients: <6.0					

