Casual Friday Presents

Fine-Tuning Mitochondrial Function Pt. 1

Cristae **Inner membrane** Intermembrane space mtDNA TIM **Electron transport chain** 0 Ribosome **Outer membrane** Granule **Matrix** Biogenetix

Acetyl CoA 1. citrate Oxaloacetate Citrate synthase NADH 8. malate NAD+ 2. aconitase dehydrogenase Malate Isocitrate → CO₂ 3. isocitrate NAD+ 7. fumarase **Krebs Cycle** dehydrogenase H₂0 ► NADH **Fumarate** α-Ketoglutarate 4. a-ketoglutarate 6. succinate * CO2 dehydrogenase FADH₂ dehydrogenase NAD+ FAD **NADH** Succinate 5. succinyl CoA Succinyl CoA synthetase The Krebs cycle directly produces 2 ATP molecules per glucose molecule. However, it also generates NADH and FADH2, which GTP GDP are crucial for the electron transport chain where a larger

amount of ATP is produced. While the complete oxidation of a

glucose molecule in cellular respiration can yield up to 38 ATP,

the Krebs cycle's direct contribution is 2 ATP.

Products
(Each Cycle)

1 ATP (GTP)

3 NADH

1 FADH₂

2 CO2

Cristae **Inner membrane** Intermembrane space mtDNA TIM **Electron transport chain** 0 Ribosome **Outer membrane** Granule **Matrix** Biogenetix

Damaged Mitochondria in Distressed Old Cell

What is broken?

Where is it broken?

What interventions can we participate in?

What results are we expecting?

How to maintain?

