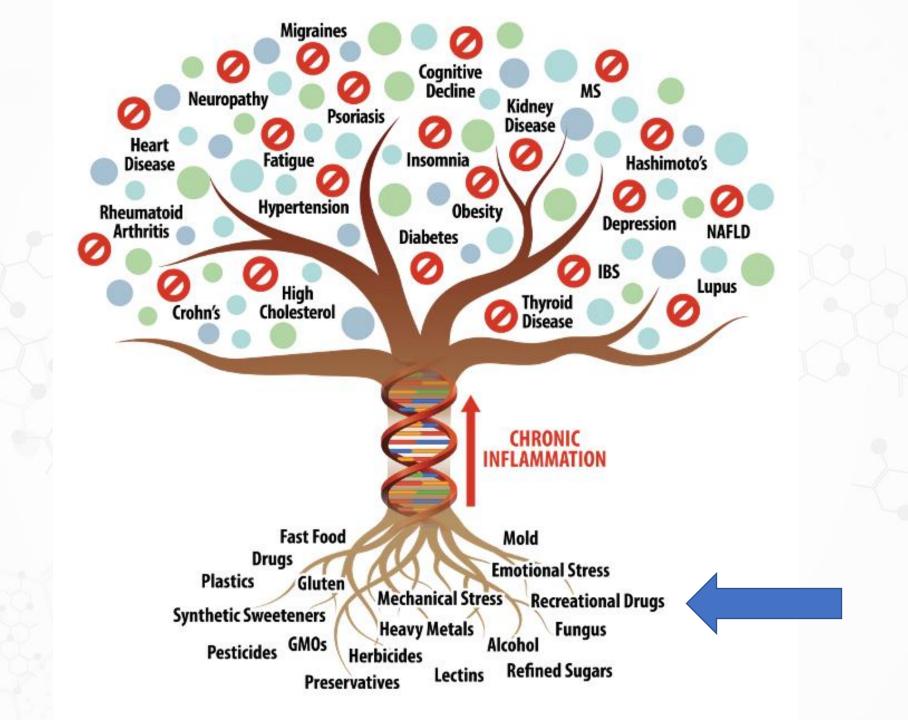
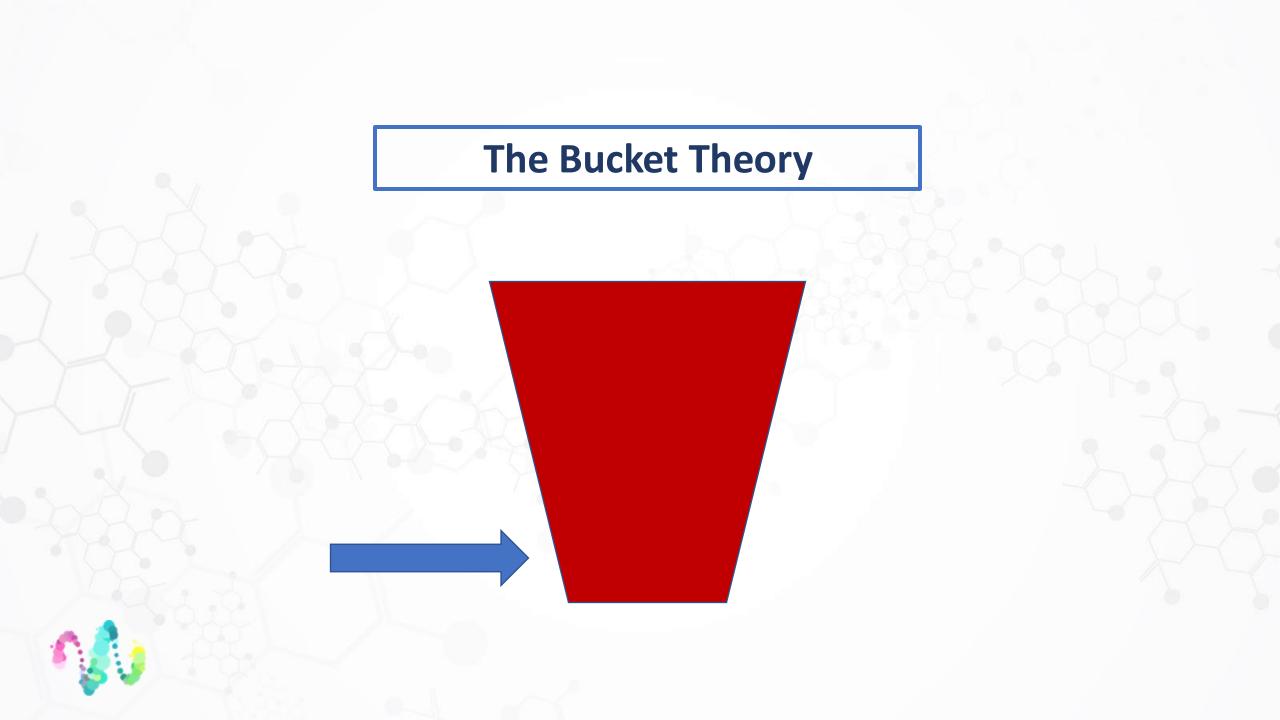
Cracking the Cardio Code pt II


A Biogenetix Clinical Presentation BIOGENETIX.COM

Disclaimer

- Information in this presentation is not intended to diagnose, treat, reverse, cure, or prevent any disease. While this presentation is based on medical literature, findings, and text, The following statements have not been evaluated by the FDA.
- The information provided in this presentation is for your consideration only as a practicing health care provider. Ultimately you are responsible for exercising professional judgment in the care of your own patients.


My doctor says it's genetic...nothin' you can do.

As a clinician...

- What are we trying to accomplish?
- What variables is the patient willing to control?
- What's already been wrecked or compromised?
- What's the literature say?
 - 1. Ancestry
 - 2. Comorbidities
 - 3. Regional concerns
- Then put together a way forward...

LipoFraction NMR (and LipoFraction NMR with Lipids)

CPT Code **83704**, **80061** (with Lipids)*
Order Code **37847** – LipoFraction NMR **37849** – LipoFraction NMR with Lipids†
Specimen Type Serum
Tube Type Red-Top (without Gel Barrier)

Evaluation of lipoprotein particles has been used to support management of cardiovascular disease (CVD) risk for over 15 years, and lipoprotein subclass analysis has become a valuable tool to help clinicians better stratify patients at risk.

In situations where LDL-C or HDL-C levels determined as part of a conventional lipid panel are optimal, additional LDL-C and HDL-C subclass analysis may identify patients with increased CVD risk.1,2

Enhanced identification of these previously unidentified at-risk patients can help physicians incorporate treatment that can help reduce atherosclerotic CVD and significantly reduce cardiovascular events.3,4

The LipoFraction NMR test utilizes the most up-to-date nuclear magnetic resonance technology to measure lipoprotein particles.

The NMR Lipoprofile includes measurements for:

- •LDL Particle Number.
- •LDL Cholesterol. (volume)
- •HDL Cholesterol. (volume)
- •Triglycerides.
- •Total Cholesterol.
- •HDL Particle Number.
- •Small LDL Particle Number.
- •LDL Size.

*ApoA, ApoB, Lipoprotein (a)

Apolipoprotein A

- ApoA-I is the major protein component of HDL and plays essential roles in the biogenesis and functions of HDL.
- Approximately 70% of the HDL protein mass is comprised of ApoA-I, with another 15–20% comprised of ApoA-II.

Utility of Advanced Lipoprotein Testing in Clinical Practice

Kenneth R. Feingold, MD.

Author Information and Affiliations

Last Update: January 3, 2023.

APOLIPOPROTEIN B

Go to: ☑

All of the pro-atherogenic lipoproteins (chylomicron remnants, VLDL remnants, IDL, LDL, and Lp(a)) carry one apolipoprotein B on their surface such that apolipoprotein B levels reflect the total number of atherogenic particles ($\underline{76}$). Most of the circulating apolipoprotein B is associated with LDL particles ($\underline{76}$). However, the contribution of very high Lp(a) levels to total Apo B levels can be substantial (Estimated Apo B in LDL/VLDL = Apo B mg/dl – (Lp(a) mg/dl x 0.16) ($\underline{77}$). Apo B levels measured in the non-fasting state are similar to fasting values.

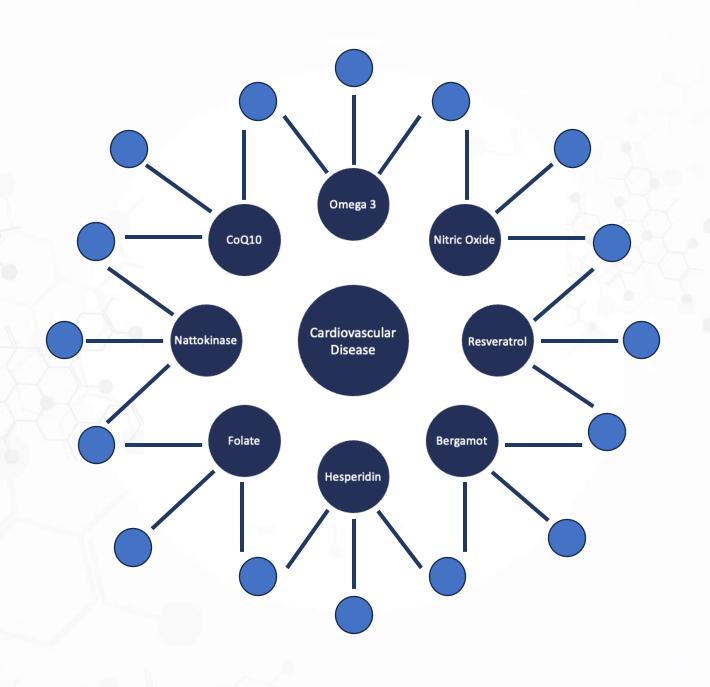
The levels of apolipoprotein B, LDL-C, and non-HDL-C are strongly correlated. Almost all studies have shown that apolipoprotein B levels are more closely associated with ASCVD than LDL-C levels and the general consensus is that apolipoprotein B levels are a more accurate predictor of ASCVD events than LDL-C (41,42,65,78-85). Apolipoprotein B levels are equivalent to non-HDL-C levels in predicting ASCVD but when these measurements are discordant apolipoprotein B levels are a more accurate predictor of ASCVD.

Lipoprotein (a) (Lp(a))

Lp(a) is an LDL-like lipoprotein with an apoB bound to an apo(a) protein. 20-25% of the global population has an elevated Lp(a), which increases the risk of atherosclerotic cardiovascular disease, independent of other traditional risk factors. Elevated Lp(a) precipitates vascular inflammation, atherosclerosis, calcification, and blood clotting.

Ordered Items NMR LipoProfile; Venipuncture

TESTS	RESULT	FLAG	UNITS R	EFERENCE INTERVAL	LAB
NMR LipoProfile					
LDL Particle Number					01
LDL-P A	3058	High	nmol/L Low Moderate	<1000 < 1000 1000 - 1299 ah 1300 - 1599	01
			Borderline-Hig High Very High	1600 - 2000 > 2000	
Lipids					01
LDL-C »	212	High	mg/dL Optimal Above optimal Borderline High Very high	0 - 99 < 100 100 - 129 130 - 159 160 - 189 > 189	01
Comment: LDL-C is inaccurate i:	f patient is	non-fas	sting.		01
HDL-C A	52		mg/dL	>39	01
Triglycerides ^A	200	High	mg/dL	0 - 149	01
Cholesterol, Total A LDL and HDL Particles	304	High	mg/dL	100 - 199	01 01
HDL-P (Total) A	27.6	Low	umol/L	>=30.5	01
Small LDL-P h	1628	High	nmol/L	<=527	01
LDL Size A	20.7		nm	>20.5	01



LIPIDS					
Cholesterol, Total	110	<200	N/A	≥200	mg/dL
Direct LDL Cholesterol	39	<100	100-129	≥130	mg/dL
HDL Cholesterol	55	≥40	N/A	<40	mg/dL
Triglycerides	131	<150	150-199	≥200	mg/dL
Lipoprotein Fractionation, NMR					
LDL-P ⁽¹⁵⁾	596	<935	935-1816	>1816	nmol/L
Small LDL-P	265	<467	467-820	>820	nmol/L
LDL Size	20.8	>20.5	N/A	≤20.5	nm
HDL-P	38.5	>32.8	29.2-32.8	<29.2	umol/L
Large HDL-P	5.9	>7.2	5.3-7.2	<5.3	umol/L
HDL Size	8.9	>9.0	8.7-9.0	<8.7	nm
Large VLDL-P	<1.5	<3.7	3.7-6.1	>6.1	nmol/L
VLDL Size	46.8	<47.1	47.1-49.0	>49.0	nm
Apolipoproteins					
Apolipoprotein A1	154	≥115	N/A	<115	mg/dL
Apolipoprotein B	46	<90	90-119	≥120	mg/dL
ApoB/ApoA1 Ratio	0.30	<0.77	0.77-0.95	>0.95	
Lipoprotein (a)	82	<75	75-125	>125	nmol/L

	Nomenclature and main histology	Sequences in progression of atherosclerosis	Earliest onset	Main growth mechanism	Clinical correlation
	Initial lesion - Histologically "normal" - Macrophage infiltration - Isolated foam cells		From first decade	Growth mainly by lipid addition	Clinically silent
NOI	Fatty streak Mainly intracellular lipid accumulation				
ENDOTHELIAL DYSFUNCTION	Intermediate lesion Intracellular lipid accumulation Small extracellular lipid pools		From third decade		
DOTHELIAL	Atheroma Intracellular lipid accumulation Core of extracellular lipid				
	Fibroatheroma • Single or multiple lipid cores • Fibrotic/calcific layers		From fourth	Increased smooth muscle and collagen increase	Clinically silent or overt
	Complicated lesion / Rupture • Surface defect • Hematoma-hemorrhage • Thrombosis	decade	Thrombosis and/or hematoma		

Sci Rep. 2023; 13: 22469.

Published online 2023 Dec 18. doi: 10.1038/s41598-023-48562-y

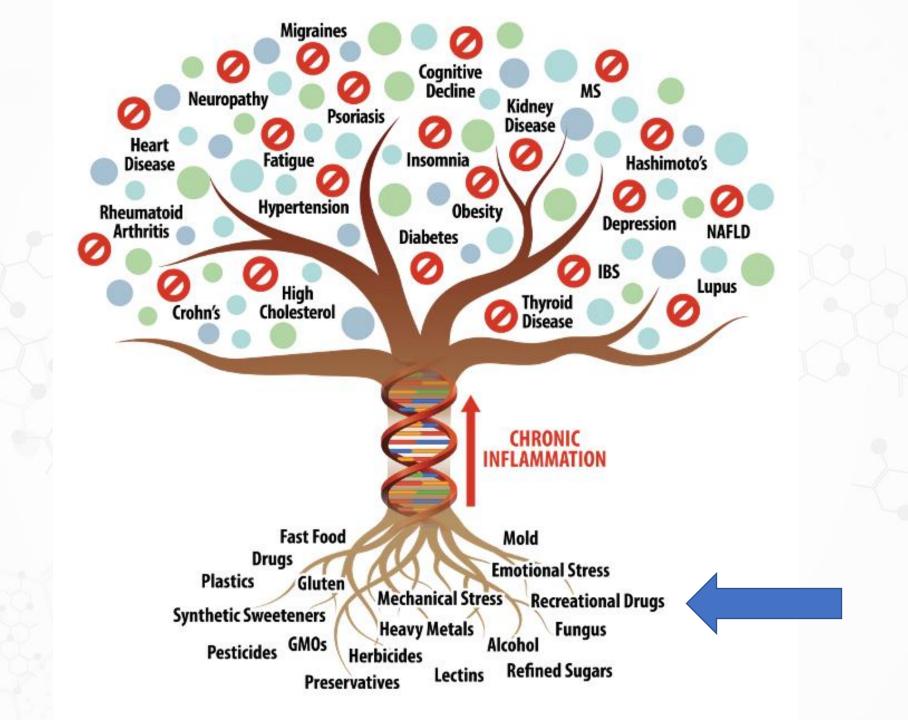
PMCID: PMC10728071 PMID: 38110459

Natto consumption suppresses atherosclerotic plaque progression in LDL receptor-deficient mice transplanted with iRFP-expressing hematopoietic cells

Takeshi Kawamata,^{#1,2} Arata Wakimoto,^{#3,4} Takanobu Nishikawa,^{⊠5} Masaya Ikezawa,⁵ Michito Hamada,^{⊠3,6} Yuri Inoue,³ Kaushalya Kulathunga,¹⁵ Filiani Natalia Salim,^{16,17} Maho Kanai,³ Teppei Nishino,¹ Kyle Gentleman,⁷ Chang Liu,⁸ Bryan J. Mathis,⁸ Nozomu Obana,^{10,11} Shinji Fukuda,^{12,13,14,18} Satoru Takahashi,^{⊠3,6} Yuki Taya,⁵ Satoshi Sakai,^{⊠19,9} and Yuji Hiramatsu^{⊠8}

Natto, known for its high vitamin K content, has been demonstrated to suppress atherosclerosis in large-scale clinical trials through a yet-unknown mechanism. In this study, we used a previously reported mouse model, transplanting the bone marrow of mice expressing infra-red fluorescent protein (iRFP) into LDLR-deficient mice, allowing unique and non-invasive observation of foam cells expressing iRFP in atherosclerotic lesions. Using 3 natto strains, we meticulously examined the effects of varying vitamin K levels on atherosclerosis in these mice. Notably, high vitamin K natto significantly reduced aortic staining and iRFP fluorescence, indicative of decreased atherosclerosis. Furthermore, mice administered natto showed changes in gut microbiota, including an increase in natto bacteria within the cecum, and a significant reduction in serum CCL2 expression. In experiments with LPS-stimulated macrophages, adding natto decreased CCL2 expression and increased anti-inflammatory cytokine IL-10 expression. This suggests that natto inhibits atherosclerosis through suppression of intestinal inflammation and reduced CCL2 expression in macrophages.

PMCID: PMC9441630


PMID: 36072877

Effective management of atherosclerosis progress and hyperlipidemia with nattokinase: A clinical study with 1,062 participants

Hongjie Chen, ¹ Jiepeng Chen, ² Fuping Zhang, ³ Yuanhui Li, ⁴ Ronghua Wang, ² Qiang Zheng, ² Xu Zhang, ² Jun Zeng, ² Feng Xu, ³, ^{*} and Yiguang Lin ³, ⁶, ⁷, ^{*}

Nattokinase (NK), known as a potent fibrinolytic and antithrombotic agent, has been shown to have antiatherosclerotic and lipid-lowering effects. However, data on human clinical studies are limited. In this clinical study involving 1,062 participants, our objective was to examine the efficacy of NK in atherosclerosis and hyperlipidemia and safety at the dose of 10,800 FU/day after 12 months of oral administration. Various factors, including lower doses that influence NK pharmacological actions, were also investigated. We found that NK at a dose of 10,800 FU/day effectively managed the progression of atherosclerosis and hyperlipidemia with a significant improvement in the lipid profile. A significant reduction in the thickness of the carotid artery intima-media and the size of the carotid plaque was observed. The improvement rates ranged from 66.5 to 95.4%. NK was found to be ineffective in lowering lipids and suppressing atherosclerosis progression at a dose of 3,600 FU/day. The lipid-lowering effect of NK was more prominent in subjects who smoked, drank alcohol, and subjects with higher BMI. Regular exercise further improved the effects of NK. Co-administration of vitamin K2 and aspirin with NK produced a synergetic effect. No noticeable adverse effects associated with the use of NK were recorded. In conclusion, our data demonstrate that atherosclerosis progression and hyperlipidemia can be effectively managed with NK at a dose of 10,800 FU/day. The lower dose of 3,600 FU per day is ineffective. The dose of 10,800 FU/day is safe and well tolerated. Some lifestyle factors and the coadministration of vitamin K2 and aspirin lead to improved outcomes in the use of NK. Our findings provide clinical evidence on the effective dose of NK in the management of cardiovascular disease and challenge the recommended dose of 2,000 FU per day.

